
Combining RDF Graph Data and Embedding Models for an
Augmented Knowledge Graph

Andriy Nikolov
metaphacts GmbH
Walldorf, Germany
an@metaphacts.com

Peter Haase
metaphacts GmbH
Walldorf, Germany
ph@metaphacts.com

Daniel M. Herzig
metaphacts GmbH
Walldorf, Germany
dh@metaphacts.com

Johannes Trame
metaphacts GmbH
Walldorf, Germany
jt@metaphacts.com

Artem Kozlov
metaphacts GmbH
Walldorf, Germany
ak@metaphacts.com

ABSTRACT
Vector embedding models have recently become popular for en-
coding both structured and unstructured data. In the context of
knowledge graphs such models often serve as additional evidence
supporting various tasks related to the knowledge base population:
e.g., information extraction or link prediction to expand the origi-
nal dataset. However, the embedding models themselves are often
not used directly alongside structured data: they merely serve as
additional evidence for structured knowledge extraction. In the
metaphactory knowledge graph management platform, we use fed-
erated hybrid SPARQL queries for combining explicit information
stated in the graph, implicit information from the associated embed-
ding models, and information extracted using vector embeddings
in a transparent way for the end user. In this paper we show how
we integrated RDF data with vector space models to construct an
augmented knowledge graph to be used in customer applications.

KEYWORDS
knowledge graph, word embeddings, graph embeddings, SPARQL
federation
ACM Reference Format:
Andriy Nikolov, Peter Haase, Daniel M. Herzig, Johannes Trame, and Artem
Kozlov. 2018. Combining RDF Graph Data and Embedding Models for an
Augmented Knowledge Graph. In WWW ’18 Companion: The 2018 Web
Conference Companion, April 23–27, 2018, Lyon, France. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3184558.3191527

1 INTRODUCTION
Representing information from semantic web datasets and free text
using vector embeddings provides a powerful tool helping to infer
implicit relations between data entities. These models can be used
directly to predict new links in a knowledge graph or serve as input
data for machine learning algorithms which perform knowledge
graph population from unstructured sources (e.g., free text). They
provide an alternative representation view for knowledge graph

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3191527

data: continuous multi-dimensional vectors as opposed to a directed
graph. For this reason, vector space embedding models are normally
used for offline tasks separately from the actual data: they merely
provide input to other algorithms, which in turn have their results
materialized, stored, and exploited in the graph form.

There exist many use case scenarios where information provided
by the embedding models serves as a valuable addition to the knowl-
edge graph itself: e.g., to retrieve the most similar entities to provide
suggestions to the user. It requires the ability to access and query
the graph and the vector space models in a uniform way. Such an
ability would allow providing the best available answer to given
user queries: e.g., returning exact answers stored in the original
graph in an explicit way as well as adding uncertain results inferred
from an embedding model or extracted from external sources using
machine learning. Moreover, different types of embedding models
such as embeddings for entities and relations extracted from the
graph and word2vec models learned from natural language text can
complement each other to improve the performance on relevant
knowledge graph population tasks [8].

The main motivation for this work comes from our experience
with the metaphactory knowledge graph management platform1,
which is used in a variety of application domains (e.g., cultural
heritage, life sciences, pharmaceutics, and IoT infrastructure). In
this paper we describe our approach to enable combined usage of
the original RDF graph data, implicit relations encoded by word and
graph embedding models, and additional knowledge extracted with
the help of embeddings by transparent querying using federated
SPARQL queries. This allows the platform to support building end-
user knowledge graph management applications that make use
of both explicit RDF data and associated vector space models in a
transparent way. We call such integrated expanded data source an
augmented knowledge graph.

2 AUGMENTED KNOWLEDGE GRAPH
CONSTRUCTION

Augmented knowledge graphs (Figure 1) includes three types of
data sources:
• The original core knowledge graph expressed in RDF
• Embedding models describing entities and relations from the
original knowledge graph and expressed as sets of vectors

1http://www.metaphactory.com/

https://doi.org/10.1145/3184558.3191527
https://doi.org/10.1145/3184558.3191527
http://www.metaphactory.com/

Figure 1: Augmented knowledge graph: components and ac-
cess.

• Additional statements extracted from unstructured sources
(e.g., free text) using the information from the knowledge
graph and embedding models as evidence

The core knowledge graph represents the reference dataset con-
sisting of two parts: the ontological schema and instance-level data.
These data are stored in the triple store and accessed directly using
the SPARQL 1.1 query language. Moreover, the core knowledge
graph serves as a source of evidence for training machine learning
models to extend it with additional data.

Graph embedding models aim at encoding information contained
in a knowledge graph in a continuous vector spacemodel that would
preserve to the maximal extent information about the statements
contained in the original graph and can be utilized to infer new
links. Graph embedding models such as TransE [1], TransR [3], or
HolE [6] produce embedding vectors for each entity and relation
in the graph. Combining the vectors for two entities (knowledge
graph instances) E1 and E2 and a relation R provides a degree of
confidence that the knowledge graph contains a true statement
R(E1,E2). Close distance between two entity embedding vectors
points to a degree of semantic similarity, i.e., that two entities
participate in the same kinds of relations.

In addition to embeddings learned directly from the graph, word
embeddings produced from a related text corpus (e.g., using a popu-
lar word2vec algorithm [5]) are utilized as well. Unlike the graph
embeddings, the word2vec model contains vectors corresponding
to the words of the natural language as opposed to ontological
instances. This requires an additional step of mapping the instances
from the knowledge graph to word2vec vectors. Such mapping can
be realized in two ways:
• Learning the word2vec model from an already annotated cor-
pus. If knowledge graph entities are explicitly referenced in
the text (e.g., as in Wikipedia), the trained model will contain
vector entries for entities alongside words. If these entities
are contained in the core knowledge graph, the model can
be used directly, otherwise an additional instance matching
step is performed.
• Label-based mapping. For RDF instances not directly repre-
sented among pre-trained word embeddings, their labels can
be used to position the entities in the word vector space.

Structured RDF graphmodel and corresponding embeddingmod-
els complement each other. The former contains explicit and reliable

statements about entities. Embedding models can be used to extract
two additional kinds of statements:

• Statements involving relations contained in the graph schema.
For example, if the graph contains a relation literaryGenre,
which is present only for some instances of type Book, possi-
ble missing values for the property can be provided by the
graph embedding model.
• “Fuzzy” relations not present in the schema. For instance,
embedding models can be used to compute semantic simi-
larity between instances. This allows posting requests such
as “who is the most similar to Rembrandt?” although the
similarity relation is not explicitly defined in the graph. Fur-
thermore, vector space proximity can be used to compute
non-standard aggregation functions: e.g., to find the most
similar instance to a group of other instances.

Due to the amount of possible questions which can be posted to the
vector space models, it makes sense to compute such information
on demand rather than materialize as RDF and store inside the
knowledge graph.

Finally, the graph itself as well as associated embedding models
can be used as evidence to extract additional relevant statements
from relevant unstructured sources: e.g., text and/or images.

3 COMBINING EMBEDDINGS FOR RELATION
EXTRACTION

Trained vector space embeddings can be used as input data for
information extraction algorithms to extend the knowledge graph
using information from unstructured data sources (primarily, text).
In particular, relation extraction from text is a long-studied research
direction, which benefited in recent years from the development of
network-based algorithms. Embedding vectors serve as input for
convolutional or recurrent neural network algorithms that make
a decision on whether a particular sentence or phrase describes
a specific ontological relation between a pair of entities. Usually,
such algorithms rely on the word embedding models learned from a
text corpus. We extended a state-of-the-art model by combining the
outputs learned from a text sequence with the embedding vectors
learned from a knowledge graph. As the baseline for our approach,
we adapted a bidirectional GRU network algorithm with sentence-
level attention 2, which in turn is based on the combination of ideas
described in [9] and [4].

One training example in the training setup represents a single
sentence mentioning two entities. The input of the network is con-
structed by encoding each token in the sentence. Each input vector
is generated by concatenating the word2vec embedding of the token
and the position embedding (positions of the token in the sentence
relative to the entities h and t). These vector representations of the
tokens are fed to the neural network (Figure 2) consisting of several
layers.

Bi-directional GRU layer. The layer includes two sets of GRU
units [2] which process the incoming sequence in two different
directions: forward and backward. The outputs of each set at each
step constitute vectors

←−
h and

−→
h , which are added to produce the

2https://github.com/thunlp/TensorFlow-NRE

https://github.com/thunlp/TensorFlow-NRE

combined output of the layer: hi =
←−
hi ⊕
−→
hi . The output of the layer

is a matrix H formed by vectors h1, · · · ,hn .
Attention layer The word attention layer post-processes the out-

put H of the bi-directional GRU layer to produce a single output
vector. The word-level attention layer combines the outputs pro-
duced by the recurrent layer using a weighted sum and produces a
single sentence embedding vector for each training example.

M = tanh(H)

α = so f tmax(wTM)

h∗ = tanh(HαT),

where h∗ is the output of the hidden word-level attention layer.
A further (optional) step involves applying sentence-level at-

tention proposed by [4]. Although a pair of entities E1 and E2, for
which a relation R holds, occurs in a sentence, it is not always rel-
evant for extracting this relation: e.g., a sentence “Vladimir Putin
visited St Petersburg in Feb 2017” cannot serve as a supporting
evidence for a correct statement bornIn(Vladimir Putin, St Peters-
burg). To address these, different training instances for the relation
R themselves get different weights, further adjusting the output
value h∗.

Word-based classification output The output of the word-based
classification of the input sentence S is produced by making a linear
transformation of h∗ and applying the softmax function.

p̂(y |S) = so f tmax(W (S)h∗ + b(S))

ŷ = argmax
y
(p̂(y |S))

Combining with entity embedding vectors To improve the quality
of the classification, we further extended the network to include
the embedding vectors learned from the knowledge graph data
as additional evidence. An additional layer combines the output
vector produced by theword-based classificationmodel with TransE
vectors. The input of the layer is formed by concatenating the
vectors {wout , e1, e2,d}, where wout is formed by the output of
the word-based classifier, e1 and e2 are TransE embedding vectors
of entities E1 and E2, and the vector d contains the vector space
distances for each relation Ri :

di = | |e1 + ri − e2 | |

.
Results returned by the output classification layer are material-

ized as RDF triples and stored in a triple store.

4 EXPERIMENTS
We conducted experiments to investigate the added value of TransE
graph embeddings using a subset of Wikidata (containing informa-
tion about persons and their relations) and a text corpus containing
Wikidata abstracts. For experiments, we re-trained the TransE em-
beddings to exclude relations contained in the test set. We compared
the F1 measure obtained for the relation extraction task by the orig-
inal model using only word2vec embeddings with the extended
model utilizing both word2vec and TransE embeddings (Table 1).

While the TransE embeddings themselves do not achieve high
accuracy in the link prediction task for the very precise factual
information (F1 measure between 0.36 and 0.65), they provide added

...

I1

I2

I3

In

−→
h 1

−→
h 2

−→
h 3

...

−→
h n

←−
h 1

←−
h 2

←−
h 3

...

←−
h n

h1

h2

h3

...

hn

+

h∗1

h∗2

h∗3

h∗4

...

h∗m

E1

E2

Input
layer

Bi-GRU
layer

Attention
layer

Entity
embed-
ding
layer

Output
layer

Figure 2: Neural network used for relation extraction using
combined word2vec and TransE vectors.

Wikidata relation Text + word2vec embeddings Combined model
p r F1 p r F1

P22 (father) 0.90 0.90 0.90 0.91 0.93 0.92
P40 (child) 0.78 0.85 0.81 0.88 0.83 0.85
P26 (spouse) 0.89 0.75 0.81 0.89 0.77 0.83
P3373 (sibling) 0.85 0.78 0.81 0.92 0.78 0.85

Table 1: Precision, recall, and F1 measure for the relation
extraction task obtained using only word embeddings vs a
combination of word and graph embeddings.

value in refining the output of the text extraction model leading to
improved accuracy in all cases. Their main impact was in filtering
out spurious candidate pairs.

RDF statements extracted from text, which do not have 100%
precision are stored separately from the main knowledge graph in
a special repository.

5 AUGMENTED KNOWLEDGE GRAPH
QUERYING

Different components of the augmented knowledge graph are ex-
pressed in different formats: RDF triples and embedding vectors.
In order to achieve seamless integration of graph and vector space
models, thesemutually complementary componentsmust be queried
in the same way. To this end, we extend the standard SPARQL 1.1
federation mechanism for hybrid queries. The Ephedra query fed-
eration architecture [7] allows querying external compute services
as SPARQL 1.1 federation members. This is achieved by building
wrappers that translate SPARQL 1.1 SERVICE clauses into service
requests and then bind results returned by the service to the output
variables.

Thus, in order to be able to query vector embedding models
using SPARQL 1.1, the embedding wrapper service must transform
information expressed in embedding vectors into RDF triples. As
discussed in section 2, vector embeddings can be used to retrieve
two kinds of statements: additional instantiations of the object

properties from the knowledge graph schema and similarity rela-
tions based on the proximity between instances in the vector space.
The first kind of statements is trivial to obtain from the graph em-
beddings such as TransE: given two elements of a triple, one can
calculate the expected embedding vector for the third one and re-
trieve the instances with the shortest distance to this expected one.
For example, to retrieve the expected object value for a property R
of a subject instance Es , one would need to compute the position
of the expected value using the corresponding embedding vectors
r and e1: êo = e1 + r and then return the instance Eo such that
eo = argmini (| |ei − êo | |).

To incorporate additional relations based on similarity, we de-
fined an artificial predicate similarTo, which returns themost similar
objects to a given subject instance: given Es , return Eo such that
eo = argmini (| |ei − es | |). Additionally, similarity is defined as an
aggregation function returning entities which are close to a group
of other entities. For this, the service first computes a centroid vec-
tor ec = avд(ek) for the set of input entities Ek and then returns
Eo such that eo = argmini (| |ei − ec | |).

Unlike the TransE graph embedding model, embeddings trained
from text using word2vec do not contain relation embedding vec-
tors explicitly. To compute these, we need to involve information
from the main knowledge graph. In order to compute an embed-
ding vector r in the word2vec vector embedding space for an object
property R, we first need to select all pairs (Ehi ,E

t
i) from the knowl-

edge graph such that the relation R(Ehi ,E
t
i) holds for them. Then,

the embedding vector r for the relation R can be calculated as
r = avд(eti − e

h
i).

In this way, we implemented the entity retrieval service that for
a given pair (Es ,R) or (R,Eo) is able to return the most likely value
for Eo or Es respectively and exposed it as a REST API. For this
service, we built an Ephedra wrapper which is able to transform
a SPARQL 1.1 SERVICE clause into a REST API call to the entity
retrieval service and then convert retrieved results into SPARQL
variable bindings. The SPARQL service accepts the following kinds
of input patterns:

• :subjectURI :propertyURI ?objectVariable
• ?subjectValue :propertyURI :objectURI
• ?variable emb:limit “K”, where “K” is a constant denoting the
expected number of the most fitting results

With this approach, we are able to formulate SPARQL queries
returning results over vector space models: e.g., “retrieve a list of
entities most similar to Rembrandt” or “retrieve the most relevant
theme of War and Peace”. These results can be joined with infor-
mation explicitly contained in the core knowledge graph as RDF
using hybrid federated queries. Such queries can potentially in-
clude more than one SERVICE clause. For example, the following
query retrieves 10 books most similar to “War and Peace” (accord-
ing to the word2vec embedding model) and additionally retrieves

information about the genres of these books, both stored explic-
itly in Wikidata and guessed using the TransE graph embeddings.

SELECT ?book ?genre WHERE {
SERVICE metaphacts:wikidataWord2Vec {

wd:Q161531 emb:similarTo ?book . # War and Peace
?book emb:limit "10" .

}
{
?book wdt:P136 ?genre . # Property:genre

} UNION {
SERVICE metaphacts:transE {
?book wdt:P136 ?genre .
?genre emb:limit "5" .

}
}

}

6 CONCLUSION AND OUTLOOK
In this paper we described an architecture enabling a unified access
to the complementary information contained in the knowledge
graph and pre-trained embedding vectors. Combining the alterna-
tive views over data helps to answer more complex queries over
graph data including fuzzy information. Moreover, exploiting dif-
ferent types of vector embeddings for the task of knowledge graph
population allows the performance of the relation extraction proce-
dure to be improved.

In our future work we plan to explore two directions. First, we
want to focus further on the use of combined embedding mod-
els for the task of link discovery with external datasets to enable
smooth inclusion of additional datasets into the augmented knowl-
edge graph. Second, we aim at exploiting the augmented knowledge
graph model to assist the user with data authoring tasks: e.g, by pro-
viding intelligent autosuggestions and pre-filling the initial values
in the data editing forms.

Acknowledgements
This work has been supported by the Eurostars project DIESEL
(E!9367) and by the German BMWI Project GEISER (project no.
01MD16014).

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, JasonWeston, and Oksana

Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In
NIPS 2013. 2787–2795.

[2] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP 2014, Doha, Qatar. 1724–1734.

[3] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In AAAI 2015.
2181–2187.

[4] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, andMaosong Sun. 2016. Neural
Relation Extraction with Selective Attention over Instances. In ACL 2016.

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[6] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. 2016. Holographic
Embeddings of Knowledge Graphs. In AAAI 2016, Phoenix, Arizona, USA. 1955–
1961.

[7] Andriy Nikolov, Peter Haase, Johannes Trame, and Artem Kozlov. 2017. Ephedra:
Efficiently Combining RDF Data and Services Using SPARQL Federation. In KESW
2017. 246–262.

[8] Steffen Thoma, Achim Rettinger, and Fabian Both. 2017. Towards Holistic Con-
cept Representations: Embedding Relational Knowledge, Visual Attributes, and
Distributional Word Semantics. In ISWC 2017, Vienna, Austria. 694–710.

[9] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo
Xu. 2016. Attention-Based Bidirectional Long Short-Term Memory Networks for
Relation Classification. In ACL 2016, Berlin, Germany.

	Abstract
	1 Introduction
	2 Augmented knowledge graph construction
	3 Combining embeddings for relation extraction
	4 Experiments
	5 Augmented knowledge graph querying
	6 Conclusion and Outlook
	References

