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Abstract. Knowledge graph management use cases often require addressing hy-
brid information needs that involve multitude of data sources, multitude of data
modalities (e.g., structured, keyword, geospatial search), and availability of com-
putation services (e.g., machine learning and graph analytics algorithms). Al-
though SPARQL queries provide a convenient way of expressing data requests
over RDF knowledge graphs, the level of support for hybrid information needs
is limited: existing query engines usually focus on retrieving RDF data and only
support a set of hard-coded built-in services. In this paper we describe represen-
tative use cases of metaphacts in the cultural heritage and pharmacy domains and
the hybrid information needs arising in them. To address these needs, we present
Ephedra: a SPARQL federation engine aimed at processing hybrid queries. Ephedra
provides a flexible declarative mechanism for including hybrid services into a
SPARQL federation and implements a number of static and runtime query opti-
mization techniques for improving the hybrid SPARQL queries performance. We
validate Ephedra in the use case scenarios and discuss practical implications of
hybrid query processing.

1 Introduction

SPARQL has emerged as a standard formalism for expressing information requests in
SemanticWeb applicationswhere the goal is to retrieve the data stored as RDF.However,
in many practical knowledge graph management use cases there is a need to address
hybrid information needs. Such needs can be characterized by the following dimensions:

– Variety of data sources. There is often a need to integrate data stored in several
physical repositories. These repositories can include both native RDF triple stores
as well as datasets in other formats presented as RDF (e.g., a relational database
exposed using R2RML mappings).

– Variety of data modalities. Graph data in RDF often needs to be combined with
other data modalities, e.g., textual, temporal or geospatial data. A SPARQL query
then needs to support corresponding extensions for full-text, spatial, and other types
of search.

– Variety of data processing techniques. Retrieved data often has to be further pro-
cessed using dedicated domain-specific services: e.g., graph analytics (finding the
shortest path or interconnected graph cliques), statistical analysis andmachine learn-
ing (applying a machine learning classifier, finding similar entities using a vector
space model), etc.



The main motivation for this work comes from our experience with the metaphac-
tory knowledge graph management platform1, which is used in a variety of application
domains (e.g., cultural heritage, life sciences, pharmaceutics, and IoT infrastructure).
Typical application scenarios often require dealing with a multitude of the above-listed
aspects simultaneously: e.g., an example request like “give me the artists who collab-
orated with Rembrandt and others similar to them” involves (a) keyword search for an
RDF resource based on the keyword “rembrandt”, (b) structured search over the RDF
graph for collaborators, and (c) applying an external model (vector space similarity) to
find other similar entities.

To handle such use case scenarios involving hybrid information needs, we developed
Ephedra: a federated SPARQL query processing engine targeted at processing hybrid
queries. SPARQL 1.1 with its SERVICE clauses provides a convenient data retrieval
formalism: a complex information request over several data sources can be expressed
using a single query. However, the existing level of tools support for expressing and
processing hybrid information needs using SPARQL is often limited. SPARQL federa-
tion implementations usually focus on the first dimension: they assume that federation
members are data stores containing RDF triples. Some triple stores also contain built-in
implementations of alternative search modalities: e.g., “magic” predicates or even cus-
tom language constructs to handle keyword search. With Ephedra we overcome these
limitations: while adopting the SPARQL 1.1 federation mechanism, we broaden its us-
age to include custom services as data sources and optimize such hybrid queries to be
executed efficiently.

Serving hybrid information requests using SPARQL raises challenges both at the
level of configuring the federation and executing the query: (a) how can we use SPARQL
queries to combine retrieval of RDF data with invoking additional hybrid services and
(b) how can we execute hybrid SPARQL query services in an efficient way. Expressing
a complex hybrid information request using a SPARQL query can be non-trivial due to
the variety of potential types of services and the limitations of the SPARQL syntax: e.g.,
a service can take as input a single set of parameters or a list of arbitrary length; it can
return as output one value, several values or a table of multiple records, etc.

Processing such service calls in the same way as genuine SPARQL endpoints would
result in sub-optimal query runtimes or even failing queries. This is caused by the spe-
cific features of the service calls such as:

– Input and output parameters. Triple patterns that express a service call do not refer
to the actual RDF data structures, but merely denote the values that should be passed
as service inputs and the variables to which the service outputs should be bound.
It has serious implications for the query evaluation, as they do not follow SPARQL
semantics: e.g., join operands cannot be re-ordered, because a service call must only
be scheduled after all its input variables are bound.

– Data cardinalities. Estimating the cardinality of a tuple expression is important for
performing static query optimization and ordering the join operands. While for gen-
uine SPARQL endpoints the selectivity of graph patterns depends on the distribu-
tion of data in the underlying repository, for service calls this often depends on the

1 http://www.metaphactory.com/



service itself: e.g., a keyword search always takes one input and returns a limited
set of search results as output.

With Ephedra we take these factors into account and use them to support practical
hybrid federation use cases of themetaphactory platform and address hybrid information
needs in an efficient way. In this paper, we are making the following contributions:

– We describe two representative use case scenarios from different domains (cultural
heritage and pharmaceutics) which present hybrid query processing challenges.

– We propose a reusable architecture in which hybrid services can be easily plugged
in, described in a declarative way, and invoked using federated SPARQL queries.

– Based on the explicit descriptions of services, we propose a number of static SPARQL
query optimization techniques to construct a valid and efficient query plan.

– We utilize dynamic query optimization to execute hybrid queries with SERVICE
clauses in minimal time, improving the performance by up to an order of magnitude.

– We validate our approach in two use cases and discuss the practical implications.

The rest of this paper is structured as follows. Section 2 presents two representative
use cases and the requirements for our work. Section 3 describes the general architecture
of Ephedra and the meta-level descriptions of services available via SPARQL. Section
4 discusses the query algebra extensions for hybrid SPARQL queries and the relevant
static query optimization techniques aimed at generating an optimal query execution
plan. Section 5 outlines the techniques Ephedra applies at runtime to modify the ex-
ecution plan on-the-fly based on the actual execution progress. Section 6 reports the
experiments we performed in order to validate our approach. In section 7, we provide an
overview of existing solutions for processing federated hybrid SPARQL queries. Finally,
section 8 concludes the paper and discusses directions for future work.

2 Use cases and challenges

The metaphactory platform is used in production in a variety of scenarios involving
knowledge graph management in different application domains. Retrieval of stored RDF
data using structured SPARQL queries is often insufficient to satisfy the application
requirements without invoking additional services. In the following we consider two
practical use cases from the cultural heritage and pharmaceutics domains. For reprodu-
cability, they are based on publicly accessible data sets and resources, they are however
representative examples akin to production use cases based on closed, proprietary data.

2.1 Use case: Cultural heritage

The CIDOC-CRM ontology2 became a popular standard for exposing cultural heritage
information as linked data. The metaphactory platform is utilized in the context of the
ResearchSpace project3 to manage the British Museum knowledge graph and help the
researchers explore meta-data about museum artifacts: historical context, associations
2 http://www.cidoc-crm.org/
3 http://www.researchspace.org/



with geographical locations, creators, discoverers and past owners, etc. A crucial piece
of functionality is structured search, where the user can construct a query request like
“give me all bronze artifacts created in Egypt between 2500BC and 2000BC” that gets
translated into SPARQL and answered using backend data. However, beyond querying
the British Museum collections, the use case requirements also involve addressing hy-
brid information needs:

– Variety of data sources: Datasets of othermuseum collections structured usingCIDOC-
CRM as well as linked public RDF data sources (e.g., Wikidata 4).

– Variety of data modalities: Some relevant data sources are also associated with
keyword search services (e.g., Wikidata search API or an external Solr index) and
geospatial search indices. The Wikidata search API, for example, provides a higher
quality of retrieved results than a built-in triple store index, but is only available as
a REST web service not directly accessible via SPARQL.

– Variety of data processing techniques: A custom semantic similarity search service
based on a word2vec vector space model.

This scenario includes a specialized data processing service, which applies a trained ma-
chine learning model to find entities similar to a given set of other entities. This service
utilizes the word2vec vector space model [1] trained on the English Wikipedia corpus.
Each Wikidata entity is represented as an embedding vector of length 50. Similarity
defined as a distance in the embeddings vector space serves as a means to indicate relat-
edness between entities and complements the explicit relations stored in the RDF triple
store. An example request that can be run over such a federation can look like: “Give
me other artists similar to the ones who collaborated with Ibaya Kyubei”.

# Example query (Q1_CH) from the cultural heritage use case
SELECT ?collabWikidataIRI ?label ?artist WHERE {

SERVICE metaphacts:wikidataSearch {
?wikidataIRI wikidata:search "ibaya" .

}
SERVICE <http://public.researchspace.org/sparql> {

?bmIRI skos:exactMatch ?wikidataIRI .
?collabBMIRI rs:Actor_created_Thing ?artifact .
?bmIRI rs:Actor_created_Thing ?artifact .
?collabBMIRI skos:exactMatch ?collabWikidataIRI .
FILTER (?bmIRI != ?collabBMIRI)

}
?collabWikidataIRI rdfs:label ?label .
SERVICE metaphacts:wikidataWord2Vec {

?collabWikidataIRI word2vec:similarTo ?artist .
}

}

Such a query requires the query engine to federate over two different data reposi-
tories (ResearchSpace and Wikidata) as well as include information from two external
services: Wikidata keyword search API and word2vec semantic similarity search.

2.2 Use case: Pharmaceutics

Another scenario in which themetaphactory platform is employed is related to the phar-
maceutics domain. The internal knowledge graph of the customer contains interlinked
4 http://www.wikidata.org



data about genes, proteins, and associated diseases. This information, however, has to
be augmented with other sources which makes this use case another example of hybrid
information needs:
– Variety of data sources: Additional relevant data sources include an Oracle rela-
tional database exposed as a SPARQL endpoint using R2RML/Ontop as well as
relevant public RDF data sources (Wikidata and Nextprot 5).

– Variety of data modalities: Full-text indices enable custom keyword search in addi-
tion to the SPARQL structured search.

– Variety of data processing techniques. Domain-specific services include the trained
machine learning models realized in the KNIME 6 data science platform as well as
the BLAST [2] web service to find similar entities based on the genome sequence
data.
An example hybrid search request can look like “Give me the gene encoding the

reelin protein and other genes having the most similar sequences”. Such a simple request
would involve all three hybrid search dimensions: keyword search service to retrieve the
id of the “reelin” protein, query over the RDF graph to find an associated gene and the
ID of the sequence, and a call to the BLAST service to find similar sequences.

# Example query (Q1_PH) from the pharmaceutics use case
SELECT * WHERE {

SERVICE metaphacts:wikidataSearch {
?uri wikidata:search "reelin" .

}
?uri wdt:P702 ?gene .
?gene wdt:P639 ?refseqID .
SERVICE ncbi:BLAST {

?refseqID blast:hasSimilarSequence ?y .
}

}

These common challenges arising in diverse use cases necessitate the use of a generic
approach for hybrid query processing. Extending the SPARQL 1.1 federation mecha-
nism for that has important advantages:
– A hybrid information need can be expressed in a fully declarative way without the
need for use case-specific custom implementations.

– The use of the standard SPARQL 1.1 syntax makes the approach compatible with
third-party tools (e.g., client-side SPARQL processing libraries).

The solution we present focuses on keeping these advantages while maintaining the
system reusable in different scenarios and processing the hybrid queries in the most
efficient way.

3 Hybrid SPARQL federation
To support the use cases described above, we developed the Ephedra query processing
engine as a part of the metaphactory platform. A crucial requirement for enabling the
hybrid querying functionality is the ability to plug in additional services with minimal
effort and reference them from SPARQL.
5 https://www.nextprot.org/
6 https://www.knime.org/



Fig. 1. Ephedra in the metaphactory platform architecture.

3.1 Ephedra architecture

Figure 1 shows the generic architecture of the metaphactory platform. Ephedra is used
as a hybrid query federation layer to access the data repositories and services. In the
course of the DIESEL project [3], we developed a set of structured search components
which allow the user’s hybrid information need to be captured interactively: the user can
define search clauses, explore partial results, incrementally add new clauses, while the
system provides relevant suggestions. These interactions generate information requests
that are expressed as SPARQL 1.1 queries by the UI components and given to Ephedra
to process them.

As the basis for Ephedra implementation, we used the RDF4J Federation SAIL API7
reusing the common functions such as query parsing and accessing remote SPARQL
endpoints. However, Ephedra extends the RDF4J object model and overrides the static
optimization and query execution strategies to deal with hybrid queries. The Ephedra
query evaluation strategy sends the sub-clauses of the query to the corresponding data
sources and invokes the relevant processing services, then gathers the partial results,
combines them using the union and join operations, and produces the final result set.
In this way, processing becomes transparent: hybrid information needs are processed in
the same way as ordinary SPARQL queries to an RDF triple store without the need to
integrate related processing services at the UI level.
7 http://docs.rdf4j.org/sail/



3.2 Describing and configuring hybrid services

In order to configure the services as federation members, the system requires relevant
information about the service type as well as service instances.

Ephedra includes two types of hybrid services: extension services and aggregate
services. Extension services take as input a partial query solution (binding set) and ex-
tend it with additional variable bindings. Extension services are called in the query via
a SPARQL SERVICE clause. On the contrary, aggregate services operate over a set of
multiple query solutions as the SPARQL aggregate functions (e.g., AVG, MIN, MAX)
do: they take as input a list of records and produce one or more resulting binding sets.
As with the SPARQL aggregates, aggregate services are referenced as function calls in
the SELECT clause.

Relevant meta-level information about the hybrid service types is summarized using
the service descriptors structured according to the service description ontology. The on-
tology expands the well-known SPIN8 ontology for SPARQL query engines to capture
the relevant parameters of services.

A service descriptor contains the following information:

– Input parameters and their expected datatypes. An input parameter is described us-
ing the SPIN ontology vocabulary as a spl:Argument resource.

– Output parameters and their expected datatypes. An output parameter is described
as a spin:Column resource in the SPIN ontology.

– Expected graph pattern. The special triple patterns expected by the service are ex-
pressed using the SPIN SPARQL syntax9. The placeholders for input/output param-
eters are expressed as resources which are referenced from the input/output param-
eter descriptors.

– Input and output cardinalities of a service call (optional).

:WikidataTextSearch a eph:Service ;
rdfs:label "A wrapper for the Wikidata test search." ;
eph:hasSPARQLPattern (

[ sp:subject :_uri ;
sp:predicate wikidata:search ;
sp:object :_token ] ) ;

spin:constraint
[ a spl:Argument ;

rdfs:comment "Input token" ;
spl:predicate :_token ;
spl:valueType xsd:string ] ;

spin:column
[ a spin:Column ;

rdfs:comment "URI of the Wikidata resource" ;
spl:predicate :_uri ;
spl:valueType rdf:Resource ] .

A descriptor for an aggregation service declares the input and output parameters
in a similar way, but instead of the list of triple patterns it defines a custom aggregate
function which will be referenced by its URI.

8 http://spinrdf.org/
9 http://spinrdf.org/sp.html#sp-TriplePattern



:word2vec a eph:AggregateService ;
rdfs:label "A wrapper for the word2vec similarity aggregate service ." ;
eph:hasAggregateFunction
[ a sp:Aggregate ;

sp:expression :_uri ;
sp:as :_similar ; ] ;

spin:constraint
[ a spl:Argument ;

rdfs:comment "Entity URI" ;
spl:predicate :_uri ;
spl:valueType rdfs:Resource ] ;

spin:column
[ a spin:Column ;

rdfs:comment "URI of the similar entity" ;
spl:predicate :_similar ;
spl:valueType rdf:Resource ] .

3.3 Implementing service extensions

To simplify the integration of new hybrid services into the framework, the architecture
provides a generic API to wrap arbitrary services and include them as SPARQL federa-
tion members. To this end, Ephedra reuses and extends the RDF4J SAIL API. A service
is represented as a SAIL module which is responsible for extracting the values of input
parameters from a given SPARQL tuple expression, executing the actual service call,
and returning the results by binding resulting values to the output variables. Ephedra
provides abstract implementations for a generic service SAIL as well as a specific wrap-
per for REST services. The common routines, such as extracting the input values and
output variables and wrapping the results as binding sets do not depend on the actual
service and are performed in a generic way using the declarative service descriptor.

A service instance is thus configured in the same way as a standard RDF4J reposi-
tory: its descriptor contains a pointer to the service type as well as the specific parameters
of the service installation (e.g., the URL by which the REST service can be accessed).

4 Adapting SPARQL algebra for hybrid queries

On receiving a federated query, Ephedra has to create a suitable query plan for its ex-
ecution. Although Ephedra adheres to the SPARQL 1.1 syntax, processing of hybrid
queries requires introducing special algebra elements to handle the extension and ag-
gregate services. Based on these, Ephedra is able to construct a suitable query plan that
would avoid failing queries and reduce the subsequent execution time.

4.1 Basic definitions

In a SPARQL query, the WHERE clause defines a graph pattern to be evaluated on
an RDF graph G. An atomic graph pattern is a triple pattern defined as a tuple P from
(I ∪V )×(I ∪V )×(I ∪L∪V ),where I ,L, and V correspond to the sets of IRIs, literals,
and variables respectively. Triple patterns are combined by means of JOIN, UNION,
FILTER, and OPTIONAL operators to construct arbitrary graph patterns. A mapping is
defined as a partial function � ∶ V → (I ∪ L ∪ B) (B is a set of blank nodes) [4], and
the domain of the mapping dom(�) expresses a subset of V on which the mapping is



defined. Then, the semantics of SPARQL queries is expressed by means of a function
JP KG, which takes as input a graph pattern P and produces a set of mappings from the
set of variables var(P ) mentioned in P to elements of the graph G. The binding of the
variable ?x according to the mapping � is denoted as �(?x). The basic query algebra
then defines the standard operations (Selection �, Join ⋈, Union ∪, Difference ∖, and
Left Join d|><|) over the sets of mappings, and query evaluation involves translating the
query into a query tree composed of these operations. For simplicity, in this paper we
use the notation P1 ⋈ P2 to refer to the join operation over sets of mappings produced
by the patterns P1 and P2. In order to allow hybrid queries to be optimized, we need to
introduce hybrid service calls at the level of SPARQL algebra.

4.2 Service clauses in SPARQL algebra
To handle extension services, Ephedra introduces the notion of a service call pattern as
a special graph pattern in the query tree.

Definition 1: A service call pattern ΣS is a tuple (id, P S , fSe , m
i, mo) identified by

an IRI id and characterized by the following parameters:
– Graph pattern P S : a SERVICE clause by which the service call is expressed in the
SPARQL query.

– Function fSe ∶ Di → Do: the function implemented by the service, which takes a
list of input parameters Di = {di} and produces a list of output results Do = {do}

– Input parameter mappings mi: set of mappings from the elements of P S to elements
of Di, which extract the values of service input parameters from the graph pattern
P S .

– Output variable mappings mo: set of mappings from the elements of Do ∪ drank to
the elements of var(P S ). One special case of a service output is drank: the rank of
the returned result, which can be added implicitly to each result returned by fSe .

Aggregate services represent a different case: since they can be applied to multisets
of partial results, they are expressed at the syntax level in the same way as standard
SPARQL aggregate operations such as COUNT, AVG, or SUM. To include the aggre-
gate service expressions, we extend the aggregate algebra construct defined in [5]:

Definition 2: A service aggregate AS is a construct of the form
Aggregate(F, fSa (D

i),Γ), where
– Γ = Group(E, P ) is a GROUP operator over the graph pattern P using a list of
expressions E.

– fSa (D
i) is an aggregation function implemented by the service, which takes as in-

put a multiset of parameter assignments Di = {Di}, where Di = {di1… din}, and
produces as output a set of output values do.

– F is a list of expressions which are applied to the results of Γ to produce the inputs
of fSa .

In Ephedra we extended the standard SPARQL 1.1 semantics to incorporate aggre-
gate services which can produce as a result a set of values as well as a single value. One
example of such services is the word2vec service we use in the cultural heritage use
case: it can take a set of several entities as input and produce a list of additional entities
that are similar to the whole set.



4.3 Building a query plan

After processing the parsed hybrid query and replacing the default SERVICE clauses
with service call patterns ΣS and service aggregates AS , the Ephedra query engine tries
to build an optimal execution plan for the query. Ephedra focuses on two types of im-
provements for the query:

– Join order optimization
– Assigning appropriate executors for JOIN and UNION operators

Determining the order in which join operators have to be processed as well as choos-
ing appropriate execution algorithms (e.g., nested loop join vs hash join) may have very
significant impact on the execution performance and so have been in the focus of re-
search when designing the federation query engines. Traditionally, sorting the join order
operands takes into account the estimated selectivity of the join parameters.

In case of hybrid queries, this step carries additional importance: an unoptimized
query may not be executable at all. The query engine must ensure that all input param-
eters of a service call group ΣS are bound before the service is called. Moreover, some
join operators can be inappropriate for use with hybrid service clauses: e.g., a service
clause which has unbound input parameters must be executed as a second argument in
a nested loop join and cannot be processed by a hash join.

When processing an n-ary join operation, Ephedra groups together the join operands
which can be executed at the same source. After that, it uses the following criteria (start-
ing from the most important) to determine whether an operand tuple expression P can
be added to the pipeline:

1. Join operands which contain service call patterns ΣS are added immediately when
all their input dependencies become satisfied.

2. A join operand Px which binds a variable vxi cannot be added if there exists a join
operand Py = ΣSy (P

S , fSe , m
i, mo) such that vxi ∈ mo(P S ): if the same variable can

be bound in a service call pattern and in an ordinary graph pattern, the service call
is executed first.

3. A join operand Px is preferred over Py if var(Px) contains a variable bound earlier
in the pipeline and var(Py) does not.

4. Finally, the estimated selectivities are taken into account. Selectivity is estimated
based on the number of free variables (for the ordinary graph patterns) or based on
service descriptors (for hybrid service calls).

The second technique used by Ephedra involves processing of the top-k queries and
handling of the results’ ranking. To this end, Ephedra uses the PARQL-ANK alge-
bra [6].

5 Optimizing hybrid queries execution

While static query optimization helps to reduce query execution time, the resulting query
performance still strongly depends on the way the operators are processed. The power



of static optimization in a hybrid federation is particularly limited, because precise se-
lectivity estimation is impossible. Reversing the order of operands in a nested loop join
or replacing it with a hash join can significantly improve the performance. To further
minimize the query execution performance, Ephedra uses two techniques: synchronizing
loop join requests and adaptive processing of n-ary joins.

5.1 Synchronizing loop join requests

Let us consider our example query Q1_CH from section 2.1. The top-level N-ary join
of the query contains 4 operands: ΣS1 (Wikidata text search), Σ2 (British Museum), Σ3
(Wikidata) and ΣS4 (word2vec). When executing a nested loop join, the engine first re-
trieves the answers �i for ΣS1 . Iterating over �i, it will probe Σ2 to receive bindings �ij
from (ΣS1 ⋈ Σ2) and continue doing this until receiving the complete answers from
(ΣS1 ⋈ Σ2 ⋈ Σ3 ⋈ ΣS4 ). When iterating over partial result sets �i, there are several
possible strategies which can be chosen for sending the probing queries qij to join the
next operand Σi+1.

1. Synchronous vs asynchronous. The engine can parallelize sending of the probing
queries qij so that the answers are added into the resulting queue as soon as they
appear. Alternatively, it can synchronize the requests to guarantee that the results
produced by the query qij will appear in the final result set before the results of qik
if j < k.

2. Separate requests vs batch. The engine can send a separate query request for each
input binding set �ij . Another strategy called Bind Nested Loop Join (BNLJ) [7]
involves grouping together several mappings �ij ,… , �ij+K and sending a single
query which would contain all bindings from the group expressed using a VALUES
clause.

The choice of the appropriate strategy depends on the type of the query as well as
the types of each join operand. The batch processing strategy using the BNLJ operator
helps to reduce the number of potentially expensive remote requests and was shown to
improve the performance significantly [7]. However, it can only be applied if the right
join operand is an RDF repository: by default, a hybrid service can only process one set
of input parameters at a time and can even break otherwise. Ephedra uses the service
descriptors to choose an appropriate strategy: e.g., in our example query it will use the
BNLJ strategy to join the data from the British Museum and Wikidata repositories, but
send the requests to the word2vec service separately.

One additional technique used by Ephedra that helps to reduce the number of ex-
pensive requests to remote hybrid services involves caching the probing queries. In our
example, the last operation in the pipeline involves joining the results of ΣS1 ⋈ Σ2 ⋈ Σ3
with the word2vec service ΣS4 using the join variable ?collabWikidataIRI. The results
of the previous operations in the pipeline contain multiple binding sets which have the
same value bound to ?collabWikidataIRI: the same pair of artists (Ibaya Kyubei andUta-
gawa Kuniyoshi) has collaborated on many woodblock prints. Processing each binding
set separately would result in many requests to the word2vec service for the same input



value (Utagawa Kuniyoshi). To avoid this, when performing a join between (ΣSi ⋈ Σ2)
and ΣS3 , we only send queries for unique key combinations (variables present in both
operands). The remote query results are then joined to each relevant binding �ij that
share the same values for key variables. This is equivalent to applying the REDUCED
operation implicitly to the set of key combinations from �ij .

5.2 Adaptive processing of n-ary joins
Sometimes, an n-ary join contains multiple service call groups that do not have unbound
inputs. It means that the evaluation of the join can start from both these groups indepen-
dently. Let us suppose that our query contains 3 join operands: ΣS1 , Σ2, and Σ

S
3 , where

bothΣS1 andΣS3 have all their input parameters bound. This n-ary join can be executed us-
ing different plans, for example (ΣS1 ⋈BNLJ Σ2) ⋈HJ ΣS3 orΣS1 ⋈HJ (Σ2 ⋈BNLJ ΣS3 ).
It is not always known in advance, which of these plans is preferable: an incorrect choice
can results in big differences in execution time. The parallel competing join strategy
originally presented in [8] to handle keyword search queries tries to avoid this by exe-
cuting the competing query plans in parallel and making the final choice between them
at runtime.

Algorithm 1 Parallel competing n-ary join
1: Ps: seed operands
2: Pd ← P∖Ps: other operands
3: for all P si ∈  do
4: Qi ← ({P si } ∪ Pd)
5: start(Qi)
6: . . . : wait until Pd = ∅
7: if ⫌ = ∅ then
8: return HashJoin({Pi})
9: . . .

10: procedure PUSHRESULTS(Pcurr, P dprev, JPcurrKG)
11: Pd ← Pd∖P dprev
12: for all Qi do
13: Qi ← Qi∖P dprev
14: P dnext ← Qcurr.next
15: if joinInThisPlan(Pcurr, P dnext) then
16: Pcurr ←NestedLoopJoin(Pcurr, P dnext)

The algorithm starts with selecting the “seed” join operands, which serve as starting
points for alternative query plans (ΣS1 andΣS3 in our example). For each of these seeds, an
alternative join sequenceQi is produced and triggered. Whenever any of the competing
query plans Qi completes the join of some operand Pprev and produces a partial result
set, a re-evaulation takes place. In the default case, it checks if the partial result set is
too large and continuing the plan Qi is likely to be more expensive than an alternative
plan. If the check passes, the next operand from Qi is joined, otherwise the plan stops.

Once all partial query plans are finished and no operand Pi remains unprocessed,
Ephedra joins the partial results of all query plans via an n-ary hash join. Alternatively,
if the ranking must be preserved, the n-ary Pull/Bound Rank Join algorithm [9] can
perform the final join.



6 Evaluation and discussion

In order to validate Ephedra, we used data and queries from our two representative use
cases from section 2. In the cultural heritage setup, we used two RDF data repositories
(British Museum (BM) and Wikidata), the Wikidata entity lookup REST API (WD-
text), and the word2vec vector space model similarity REST API. The latter was used
both as an extension service (to retrieve instances most similar to a single input one)
and as an aggregation service (to retrieve instances similar to a group of input entities).
The model was trained on the English Wikipedia corpus using gensim10. In the pharma-
ceutics setup, we used two public RDF repositories (Wikidata and Nextprot), Wikidata
entity lookup API (WD-text), and a wrapper around the public BLAST API 11.

The test queries for two domains were selected in such a way that (a) they were
representative examples of queries arising in practical use and (b) each one covered
at least two hybrid query dimensions. We used four queries from the cultural heritage
domain and three queries from the pharmaceutics domain12. We compared the average
query execution runtimes with disabled and enabled optimization techniques described
in sections 4 and 5. Table 1 shows the runtime performance for each query, averaged over
five runs. As we can see, query optimization techniques of Ephedra led to improvements

Query Sources Baseline Ephedra
Time (sec) � Time (sec) �

Q1_CH Wikidata, WD-text, BM, word2vec 10.20 0.42 1.40 0.19
Q2_CH Wikidata, WD-text 1.56 0.16 0.73 0.25
Q3_CH Wikidata, BM 13.17 0.13 4.52 0.90
Q4_CH Wikidata, WD-text, BM, word2vec (aggregate) 4.40 0.49 1.28 0.03
Q1_PH Wikidata, WD-text, BLAST 12.38 0.76 2.24 0.28
Q2_PH Wikidata, WD-text 1.50 0.25 0.70 0.02
Q3_PH Wikidata, WD-text, Nextprot 3.54 0.06 1.31 0.36
Geom. Mean 4.82 1.43

Table 1. Average execution time (sec) for test queries taken over 5 query runs.

in the query evaluation runtimes for all test queries, sometimes by an order of magnitude.
The factors which contributed the most were:

– Processing of loop join requests, where combining asynchronous processing with
the bound join operator resulted in the best performance of n-ary joins.

– Competing nested loop join, which was beneficial for n-ary joins with several po-
tential starting points (Q2_CH and Q2_PH).

– Caching of probing requests, which helped to avoid expensive redundant remote
service calls (Q1_CH and Q1_PH).

Our validation experiments have shown that having special optimization techniques
that treat hybrid service calls differently from “native” SPARQL endpoints can substan-
tially benefit performance. This enabled Ephedra to fulfill the requirements of the use
cases by maintaining acceptable response times of the metaphactory platform.
10 https://radimrehurek.com/gensim/
11 https://ncbi.github.io/blast-cloud/dev/api.html. In the tests we only measured the time required
to register a search request, since complete processing of the request takes ~1 min and varies
greatly depending on the public server workload.

12 The queries are available online on https://github.com/metaphacts/ephedra-eval



Beyond that, some of the lessons we learned concern more pragmatic aspects. One
such conclusion is that conformance to the SPARQL standard helps both to improve
reusability and reduce the maintenance effort. Sometimes, tools and triple stores intro-
duce syntax-level modifications of SPARQL to realize the hybrid query functionalities:
e.g., special syntax for keyword search clauses or graph analytics queries. Given that
SPARQL processing must be performed at different layers (client-side, query federation,
backend repository) using different libraries, special syntax changes become particularly
difficult to handle and severely increase the solution building costs. Instead, introducing
special interpretations of standard language concepts (e.g., “magic” predicates, custom
functions) without changing the language syntax is preferable.

7 Related Work

There are several approaches that focused on specific dimensions of hybrid query pro-
cessing.Main triple store implementations, such as Blazegraph13, Virtuoso14, GraphDB15,
and Stardog16, take the SPARQL 1.1 standard as the basis for supporting federated
queries. Usually, they share the assumption that federation members represent remote
RDF repositories and they do not maintain meta-level information about federation
members. Some triple stores (e.g., Blazegraph) also provide interfaces for adding cus-
tom service extensions. However, to our knowledge, they are not treated differently from
remote SPARQL endpoints. Alternative data modalities (e.g., full-text and geospatial
search) are supported using specialized built-in indices and expressed in SPARQL using
“magic” predicates or SPARQL syntax modifications (e.g., full-text search in Virtuoso
and Stardog). This makes it difficult to develop reusable database-independent solution
applications.

Specialized SPARQL federation engines focus on optimal processing of distributed
SPARQL queries. They usually maintain meta-level information about federation mem-
bers which helps them to build an optimal query plan (e.g., SPLENDID [10], ANAP-
SID [11], or HiBISCuS [12]) as well as use special runtime execution techniques tar-
geting remote service queries (e.g., FedX [7]), but still focus on interacting with RDF
repositories rather than services.

In contrast, SCRY [13] and Quetzal-RDF [14] deal with calling data processing ser-
vices using SPARQL queries. Quetzal-RDF defines custom functions and table func-
tions (generalized aggregation operations) and invokes them from a SPARQL query, but
does not follow the SPARQL 1.1 syntax. SCRY conforms to SPARQL 1.1 using spe-
cial GRAPH targets to wrap service invocations, although it cannot distinguish between
multiple input/output parameters. None of these systems, to our knowledge, applies op-
timizations targeted at reducing the hybrid queries’ execution time.

13 http://www.blazegraph.com
14 http://virtuoso.openlinksw.com
15 http://ontotext.com/products/graphdb/
16 http://www.stardog.com/



8 Conclusion

Our approach to the problems of handling hybrid queries was motivated by the require-
ments of commercial use case scenarios in two different domains. The design choices of
Ephedra were influenced by the need to maintain the platform reusability and minimize
the effort needed to develop and deploy a solution for a new use case. In this respect,
expanding the intended usage area of SPARQL queries to express hybrid information
needs while maintaining the conformance to SPARQL 1.1 helped us to achieve this goal.
The main directions for the future work concern further minimizing the adaptation effort
needed to deploy metaphactory in a new use case. This involves, for example, building
a library of reusable data analytics services (e.g., for common machine learning algo-
rithms).
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