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Abstract. In this system paper we describe metaphactory, a platform for building knowledge graph management applications.
The metaphactory platform aims at supporting different categories of knowledge graph users within the organization by realizing
relevant services for knowledge graph data management tasks, providing a rich and customizable user interface, and enabling
rapid building of use case-specific applications. The paper discusses how the platform architecture design built on open standards
enables its reusability in various application domains and use cases as well as facilitates integration of the knowledge graph with
other parts of the organizational data and software infrastructure. We highlight the capabilities of the platform by describing
its usage in four different knowledge graph application domains and share the lessons learnt from the practical experience of
building knowledge graph applications in the enterprise context.
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1. Introduction

In the recent years, knowledge graph technologies
established a solid position in the enterprise world,
serving as a central element in the organizational data
management infrastructure. Knowledge graphs are
becoming both the repository for organization-wide
master data (ontological schema and static reference
knowledge) as well as the integration hub for vari-
ous legacy data sources: e.g., relational databases or
data streams. However, the tool support for managing
knowledge graphs and building custom applications on
top of them is still limited. To support organizations
in managing and making use of knowledge graphs, we
created the metaphactory platform which covers the
whole lifecycle of knowledge graph applications: from
data extraction & integration, storage, and querying to
visualization and data authoring.

In order to exploit the capabilities of knowledge
graph technologies to the maximal extent, an organiza-

*Corresponding author. E-mail: an@metaphacts.com. The au-
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tion requires many supporting functionalities beyond
merely being able to store data as a graph and query it.
Within a large organization, these functionalities have
to provide support for different user groups: from lay
users who merely want to explore the data in a conve-
nient way to expert users who manage and modify the
knowledge graphs and internal developers who create
targeted applications customized for specific end user
groups. Based on these diverse needs, such functional-
ities include:

– Data management: Common management tasks
can be time-consuming and expensive without
supporting tools. Even assistance in such ba-
sic functionalities like SPARQL querying with
graphical UI, auto-suggestions, and query cata-
log can already go a long way in uncovering the
added value of knowledge graphs. Moreover, sup-
port for knowledge graph authoring, including
both schema ontologies and the instance data, as
well as integration of data from other sources of
different types are the features needed in almost
any enterprise use case.
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– End-user oriented interaction: The user has to
be able to interact with the knowledge graph in
an intuitive and user-friendly way. This includes,
for example, the need for navigation, exploration
and visualization of knowledge graphs, rich se-
mantic search with visual query construction and
faceting, and a simple yet powerful interface for
data authoring and editing.

– Rapid application development: Generic support-
ing toolkit must enable creating use case-specific
user applications with minimal effort.

We developed the metaphactory platform to realize
these functionalities while primarily aiming at large
enterprises and organizations. The challenges of the
use case scenarios in such organizations necessitate
certain design principles which a generic knowledge
graph management platform has to follow:

– Reusability: The platform can be used in a great
variety of contexts, domains, and use cases to
serve multiple categories of users. All aspects and
functionalities of a generic platform must be cus-
tomizable to enable it to be reused in any context.
Whenever possible, the design must avoid any in-
herent assumptions about the data and user needs.
The use of generic open standards such as RDF1,
SPARQL2, SHACL3, and others where available
helps to achieve this.

– Compatibility: In most cases, the knowledge
graph constitutes only a part of the organiza-
tional data infrastructure and must be used in
combination with other elements: non-RDF data
sources, data processing APIs, external data an-
alytics tools. A knowledge graph management
platform must be compatible and envisage inte-
gration with other elements of the infrastructure
both at the input level (combining different kinds
of data for transparent access) as well as at the
output level (enabling knowledge graph data to
be consumed by external tools). Open interfaces
should be used whenever possible to simplify
such integration.

– Extensibility and customization: A platform which
is intended to be reused in different domains and
use cases must provide an expert user with capa-
bilities to build custom targeted applications for

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-query/
3https://www.w3.org/TR/shacl/

her needs with only a minimal support from the
platform vendor.

In this paper we present the key concepts of the
metaphactory platform showing how these design
principles help to address the knowledge graph man-
agement challenges and share our experiences and
lessons learnt in applying the platform in diverse real-
world use cases. The rest of the article is structured
as follows. Section 2 provides a high-level overview
of the architecture of the platform and its main build-
ing blocks. Further sections explain the functionali-
ties of each architecture layer in detail. Section 3 de-
scribes how the platform manages heterogeneous data
sources and provides a uniform querying mechanism.
Section 4 outlines the set of services realized by the
platform and exposed for consuming. Section 5 out-
lines the design decisions behind the customizable UI
of metaphactory and discusses different supported in-
teraction paradigms. In section 6 we describe four ap-
plication scenarios of the platform and discuss the ex-
periences and lessons learnt. Finally, section 7 con-
cludes the paper and provides the directions for future
work.

2. Architecture

Figure 1 shows a high-level overview of the archi-
tecture of the metaphactory platform developed to pro-
vide a variety of functionalities aiming at different tar-
get user groups. One such group includes the end users
within the organization. These users are not interested
in the internals of the knowledge graph data structure
or technical complexities of data access and integra-
tion. The expert users and data architects that have to
author and modify the knowledge graphs and incorpo-
rate legacy data are primarily interested in convenient
and efficient tools to make data management opera-
tions easier. Finally, application developers within the
organization require that it is easy to incorporate the
knowledge graph infrastructure into the overall soft-
ware infrastructure of the organization and build new
targeted end-user applications exploiting the knowl-
edge graph with a minimal effort. The architecture was
designed to reconcile the diverse requirements of these
groups while maintaining the design constraints out-
lined above: enabling reusability in different domains,
compatibility with other data sources and applications,
and supporting extensibility and customization.

The platform operates on top of a graph database
storing the knowledge graph. The communication is

https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/shacl/
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Fig. 1. metaphactory system architecture.

performed by the data access infrastructure of the
platform using standard SPARQL 1.1 queries, which
makes the system independent from a specific database
vendor. Depending on the customer needs, this al-
lows the platform to connect to various different triple
stores or even non-RDF sources virtually integrated
and exposed via a SPARQL interface: e.g., a rela-
tional database integrated using R2RML4 mappings or
a custom keyword search index. To be able to interact
with multiple data sources using virtual data integra-
tion, the platform contains a SPARQL federation en-
gine Ephedra [1], which realizes SPARQL 1.1 query
federation over both SPARQL endpoints and custom
compute services.

On top of the data access infrastructure, the platform
services layer implemented at the platform backend
side realizes a range of generic functionalities for inter-
action with knowledge graphs. The services extend the
capabilities of the standard SPARQL access normally
provided by triple stores and offer the specific capa-

4https://www.w3.org/TR/r2rml/

bilities to serve the needs of each target user groups:
simplify the communication between web-based end-
user UI and the knowledge graph, perform knowl-
edge graph management operations over the ontolog-
ical schema and data required by expert users and
knowledge graph maintainers, and enable easy interac-
tion with other tools, which is needed by in-house de-
velopment teams. These services are exposed as REST
APIs to be consumed by the client-side user interface
as well as by third-party tools: e.g., Tableau5 or KN-
IME6 for data analytics. One critical functionality im-
plemented at this level is the user access control: the
platform allows configuring fine-grained access at the
level of specific APIs available to each user role.

The web-component based user interface is built us-
ing a customizable templating mechanism. Each URI
resource in the knowledge graph is visualized using an
HTML page. While one can design a separate HTML
page for each resource, in the majority of cases this is

5http://www.tableau.com
6http://www.knime.com

https://www.w3.org/TR/r2rml/
http://www.tableau.com
http://www.knime.com
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not required: it is possible to specify template pages
that can be applied to any resource of the same type.
When visualizing a data resource, the platform tries
to select an appropriate template among the available
ones. This template then gets rendered using the actual
URI of the resource. The metaphactory client-side UI
provides a plethora of customizable UI components for
interacting with semantic data: from table-based and
graph-based visualizations to structured search envi-
ronments and data authoring controls based on knowl-
edge patterns. Each one represents an HTML5 compo-
nent that can be directly inserted and configured within
HTML code.

In this way the user interface can be easily cus-
tomized for the specific application use case at hand.
The use of the standard HTML5 format for storing
client-side UI views enables an expert user to create
and edit her own interface. Use case-specific configu-
ration parameters and UI templates can be packaged as
a separate app and added to the default platform instal-
lation to realize a custom domain-specific knowledge
graph management application.

At the core of the architecture is the use of open
standards at all levels to enable smooth integration of
the platform with existing tools and data providers.
This also allowed using open-source libraries devel-
oped in the Semantic Web community to implement
the platform functionalities. Table 1 summarizes the
open standards and tools used for implementation of
the metaphactory platform at different architecture
layers.

3. Data Access Infrastructure

The metaphactory data access infrastructure is built
on top of the RDF repository that serves as the storage
for the managed knowledge graph data. The SPARQL
1.1 query language supported by most available RDF
databases serves as a common communication proto-
col. The platform reuses a popular RDF4J framework7

to realize access to data repositories. In this way, (a)
the platform can be installed in any environment that
already includes a triple store chosen by the customer
organization as well as (b) enables selecting any data
storage solution based only on the use case require-
ments without introducing additional constraints on its
own. In particular, this helps addressing the scalability

7http://rdf4j.org/

issue: an appropriate backend triple store and a suit-
able hardware infrastructure for it can be selected de-
pending on the size of the dataset. The platform can be
installed separately from the triple store and interact
via HTTP.

The metaphactory platform officially supports most
of the well-known triple store solutions available on
the market, e.g. Blazegraph8, Stardog9, Amazon Nep-
tune10, GraphDB11, Virtuoso12, and others.

While the platform requires the existence of one
main default RDF repository containing domain data,
it allows working with multiple repositories as well:
the platform’s repository manager enables configuring
and managing connections to many data repositories
in a declarative way. In particular, this enables manag-
ing domain data separately from the system data such
as saved SPARQL queries or SHACL data quality re-
ports. Different data sources maintained by the repos-
itory manager are described in RDF using the RDF4J
repository configuration ontology. These repositories
can include not only native RDF triple stores but other
data sources accessible via SPARQL: most impor-
tantly, relational databases virtually integrated using
R2RML mappings and exposed via SPARQL with an
ontology-based data access engine, either a separate
one like Ontop [2] or one integrated with a triple store
like Stardog.

In many use case scenarios there arises a need to
handle hybrid information needs that require com-
bining information from multiple data sources. These
needs are characterized by such dimensions as:

– Variety of data sources: The data to be integrated
is often stored in several physical repositories.
Such repositories can include both RDF triple
stores and datasets that are only virtually pre-
sented as RDF: e.g., relational databases exposed
using R2RML mappings.

– Variety of data modalities: RDF graph data of-
ten needs to be combined with other data modali-
ties: e.g., textual, temporal, or geospatial data. To
be able to integrate those, SPARQL queries need
to support special extensions for full-text, spatial,
and other corresponding types of search.

8https://www.blazegraph.com/
9https://www.stardog.com/
10https://aws.amazon.com/neptune/
11https://ontotext.com/products/graphdb/
12https://virtuoso.openlinksw.com/

http://rdf4j.org/
https://www.blazegraph.com/
https://www.stardog.com/
https://aws.amazon.com/neptune/
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https://virtuoso.openlinksw.com/
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Table 1
Open standards and open-source semantic web tools utilized in the metaphactory platform.

Architecture layer Standards used Open-source semantic web tools
Data access infrastructure RDF, SPARQL 1.1, GeoSPARQL, R2RML RDF4J, Ontop
Platform services LDP, SHACL, RDFS/OWL, REST RDFUnit
User interface HTML5, Web Components SPARQL.js

– Variety of data processing techniques: Relevant
data is often not stored directly in some reposi-
tory, but has to be computed by some dedicated
domain-specific services: e.g., graph analytics
(finding the shortest path or interconnected graph
cliques), statistical analysis and machine learning
(applying a machine learning classifier, finding
similar entities using a vector space model), etc.

An application scenario can require dealing with
several of these aspects simultaneously. While fed-
erated query processing appears a natural way for
on-the-fly integration of diverse data sources, the re-
search effort, however, mainly concentrated on achiev-
ing the transparent query federation over native RDF
datasets as opposed to the hybrid query challenges.
Existing approaches either utilize meta-level informa-
tion about federation members in order to build an
optimal query plan (e.g., DARQ [3], SPLENDID [4],
ANAPSID [5], or HiBISCuS [6]) or use special run-
time execution techniques targeting remote service
queries (e.g., FedX [7]). Among the approaches target-
ing hybrid query processing, SCRY [8] and Quetzal-
RDF [9] deal with calling data processing services
using SPARQL queries. Quetzal-RDF defines custom
functions and table functions (generalized aggregation
operations) and invokes them from a SPARQL query,
but does not follow the SPARQL 1.1 syntax. SCRY
conforms to SPARQL 1.1 using special GRAPH tar-
gets to wrap service invocations, although it cannot
distinguish between multiple input/output parameters.
Thus, both these solutions are not generic enough
to handle the whole range of available hybrid data
sources that include arbitrary structure of input and ar-
bitrary size of the solution sets.

Given the limitations of existing solutions, to ad-
dress these challenges we implemented Ephedra: a
SPARQL federation engine for hybrid queries [1]. We
adopt the SPARQL 1.1 federation mechanism using
the SERVICE keyword, but broaden its usage to enable
custom services to be integrated as data sources and
optimize such hybrid SPARQL queries to be executed
efficiently.

Ephedra defines a common implementation inter-
face, in which interactions with external services are

encapsulated in an RDF4J SAIL module13. In this way,
a custom compute service can be registered in the
repository manager as yet another SPARQL repository
and referenced inside SERVICE clauses in SPARQL
queries. SPARQL graph patterns specified inside such
SERVICE clauses are parsed to extract input parame-
ters for a service call as well as the variables to bind the
results returned by the service. The Ephedra SPARQL
query execution strategy sends the sub-clauses of a
query to corresponding data sources, gathers partial re-
sults, combines them using union and join operations,
and produces result sets. In this way, processing hybrid
queries is transparent and performed in the same way
as ordinary SPARQL queries.

In order to express custom service requests as part of
SPARQL queries, hybrid services integrated through
Ephedra are declaratively described using the Ephedra
service descriptor ontology. This ontology extends the
well-known SPIN14 ontology to define the accepted
graph patterns, input arguments, and output results.
For example, a wrapper for a custom service that re-
trieves similar entities based on the proximity in the
word2vec vector embedding space looks like the fol-
lowing:

:Word2VecSimilarityService a eph:Service ;
rdfs:label "A wrapper for the word2vec
similarity service." ;
eph:hasSPARQLPattern (
[
sp:subject :_entity ;
sp:predicate mph:hasSimilar ;
sp:object :_similar

]
) ;
spin:constraint
[
a spl:Argument ;
rdfs:comment "URI of the search entity" ;
spl:predicate :_entity ;
spl:valueType xsd:anyURI

] ;
spin:column
[
a spin:Column ;
rdfs:comment "URI of a similar entity" ;
spl:predicate :_similar ;
spl:valueType xsd:anyURI

] .

13http://docs.rdf4j.org/sail/
14http://spinrdf.org/

http://docs.rdf4j.org/sail/
http://spinrdf.org/
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Based on this descriptor, Ephedra will be able to in-
terpret and process the following query answering the
question “Which painters are similar to Rembrandt?”
and returning service outputs among the query result:

SELECT ?artist ?label WHERE {
SERVICE mpfed:wikidataWord2Vec {

wd:Q5598 mph:hasSimilar ?artist .
}
?artist wdt:P106 wd:Q1028181 . # painter
?artist rdfs:label ?label .

}

With this approach, services with standardized in-
terfaces (e.g., REST APIs) can be included into the
Ephedra federation in a fully declarative way, without
the need to implement specific service wrappers.

Processing hybrid queries including custom service
calls requires modifying the query processing proce-
dures, because a hybrid query does not follow the
standard SPARQL semantics. Processing a SERVICE
clause realizing a custom service call requires all in-
put parameters to be bound, which means that the join
operands cannot be arbitrarily re-ordered. For this rea-
son, Ephedra implements dedicated static query opti-
mization strategies, which produce an optimal and ex-
ecutable query plan. The SPARQL query algebra is ex-
tended to include service call patterns ΣS as first-class
elements. Building a query plan containing hybrid ser-
vice call patterns involves join order optimization to
ensure that such patterns can be only joined after their
input dependencies are bound. Moreover, presence of
a service call pattern in the query plan imposes addi-
tional restrictions on the selection of suitable join op-
erators: for example, it necessitates the use of nested
bound join as opposed to hash join.

After constructing an executable hybrid query plan,
Ephedra uses dynamic query optimization techniques
to reduce the processing time: in particular, synchro-
nizing loop join requests and adaptive processing of n-
ary joins. The evaluation experiments reported in [1]
show that these techniques result in runtime improve-
ments for all test queries, sometimes by an order of
magnitude.

4. Platform Services

The platform backend realizes a range of services
that implement additional functionalities on top of
the standard interfaces of triple stores. These services
streamline the specific types of interactions with the
knowledge graph that are required by different tar-
get user groups. They include (a) convenience services
that realize commonly required tasks that are usually

not provided by triple stores directly and (b) connec-
tor services that make data from the knowledge graph
consumable by applications.

Convenience services implement commonly re-
quired routines that are either too cumbersome to be
realized by sending SPARQL queries directly or re-
quire additional tools (e.g., a separate keyword search
index). These services are implemented in a generic
way avoiding dependencies on a particular triple store
and/or ontology. A simple example of a convenience
service is a generic label service retrieving a human-
readable label for a given resource. The service can
be configured to deal with various modelling pat-
terns (e.g., taking into account not rdfs:label, but
skos:prefLabel or even property paths) and language
preferences. Such services provide the functionalities
utilized by the end-user interface components.

Another set of generic convenience services realizes
the knowledge graph management tasks required by
expert users and their tools:

– Linked Data Platform (LDP) service for resource-
based access, creation, update, and deletion of
linked data according to the W3C LDP specifica-
tion15

– Data quality service for performing data valida-
tion using SHACL constraints.

– Query catalog service for saving and managing
reusable SPARQL query templates (expressed us-
ing the SPIN ontology).

– Keyword search service based on the Graph-
Scope16 data search engine integrated into the
platform.

Manual modifications of a knowledge graph as well
as bringing in transformed legacy data sources cause
the need to verify and maintain the knowledge graph
data quality: its adherence to the schema ontologies
and domain constraints. To this end, the metaphactory
platform utilizes the SHACL standard for defining and
verifying the data constraints. SHACL provides an on-
tology for expressing data constraints in the form of
shapes: RDF structures describing sets of restrictions
that the data in the main knowledge graph must con-
form to. SHACL allows defining complex combina-
tions of constraints more expressive than those sup-
ported by OWL. The metaphactory platform supports
both SHACL constraints defined manually by the user
as well as automatically generated from the OWL on-

15https://www.w3.org/TR/ldp/
16http://metaphacts.com/graphscope

https://www.w3.org/TR/ldp/
http://metaphacts.com/graphscope
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tology. Auto-generator bootstrapping rules process the
RDFS and OWL restrictions and generate correspond-
ing SHACL shapes. The platform includes a SHACL
execution engine based on the open-source RDFUnit17

implementation that transforms SHACL shapes into
SPARQL queries, executes them against the knowl-
edge graph and generates a data quality report.

Connector services aim at pre-processing and ex-
posing knowledge graph data in a way that makes it
easily consumable by external applications. These ser-
vices are primarily available for the needs of applica-
tion developers utilizing the knowledge graph infor-
mation in combination with other elements of the in-
frastructure within an organization. Examples of such
services are the Tableau connector service that ex-
poses the data for analysis by a popular Tableau ap-
plication and the Alexa skill service that generates
an Alexa18 skill description to enable voice interac-
tion with knowledge graph. To ease the integration
of the platform into an organizational infrastructure,
the Query-as-a-Service (QaaS) functionality is imple-
mented. This allows exposing pre-saved parameterized
SPIN query templates as custom REST APIs that are
easy to call by internally developed tools within a cus-
tomer organization. Ability to work with a REST API
is usually preferred by internal developer teams to the
need to compose and send SPARQL queries directly.

To reconcile the needs to support diverse user
groups and to keep the platform adaptable to various
different use cases and ease integration with other tools
and applications in the organization, the service layer
was implemented based on open standards whenever
possible. While SPARQL 1.1 is used as a common
query language, other standards are used for realiz-
ing more specific functionalities: for example, SHACL
to specify and process the constraints over the data,
LDP to enable management operations over RDF us-
ing HTTP requests, REST as a communication inter-
face for external applications.

5. User Interface

The user interface design of the metaphactory plat-
form aims at satisfying the requirements outlined in
section 1: enabling reusability, compatibility, and cus-
tomization. For this reason, the core platform interface
is implemented in a generic way, providing tools for

17https://github.com/AKSW/RDFUnit
18https://developer.amazon.com/alexa

custom-building of all specific views for the use case
at hand. In addition to that, the platform envisages ex-
ternal applications connecting to it, which gives possi-
bility to use alternative user interfaces according to the
user needs. One example of such an alternative UI is
Amazon Alexa.

5.1. Customizable UI: templates and custom
components

The web-based UI of the metaphactory platform is
resource-centric: the platform renders an HTML view
for a provided URI of a resource from the knowl-
edge graph (Fig. 2). Resource views can be specified
at different levels of abstraction: it is possible to de-
fine a dedicated HTML view for one specific resource
as well as provide templates that will be applied to all
resources of a specific kind. The criterion for choos-
ing a template for a resource is configurable: by de-
fault, the template is selected according to the rdf:type
property value, but this can be changed by providing a
special template selection SPARQL query. This allows
adapting the platform setup depending on the high-
level structure of the knowledge graph.

Resource views and templates are defined as HTML
pages. These can be created and edited directly in the
platform using the provided HTML editor. Besides
standard HTML tags, a view can contain special UI
components: configurable custom client-side UI ele-
ments which can be referenced in the template source
code as special HTML5 tags. A custom UI compo-
nent receives its configuration parameters as tag at-
tributes. A generic component that needs to interact
with the knowledge graph (e.g., to visualize data) re-
ceives the data selection SPARQL query as part of its
configuration and interacts with the platform backend
service layer APIs to obtain the required data. In par-
ticular, the built-in components reuse the open-source
SPARQL.js19 library to operate with SPARQL queries.

Moreover, the web components provided by metaphac-
tory are not only customizable individually, but are
composable. Some component can define an environ-
ment that can include other nested components able
to communicate via pre-defined interfaces. Such en-
vironments can define common configuration param-
eters that are applied to all included components as
well as define a layout for these components. An ex-
ample of such environment is a structured search com-

19https://github.com/RubenVerborgh/SPARQL.js

https://github.com/AKSW/RDFUnit
https://developer.amazon.com/alexa
https://github.com/RubenVerborgh/SPARQL.js
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Fig. 2. Example resource view for a protein in the Wikidata knowledge graph.

ponent that is able to combine different input controls
for generating a search request (e.g., keyword search
or form-based search) with various options for visual-
izing and exploring search results. With this approach,
complex user interaction functionalities can be spec-
ified in a fully declarative way by composing pre-
existing atomic elements without the need to build new
components for each new use case application.

In this way, the user interface addresses the design
requirements supporting reusability and custom appli-
cation building. View templates and configurable cus-
tom components provided by the platform enable parts
of the UI to be reused for different resources, datasets,
and applications. Building a custom end-user applica-
tion for a specific use case involves defining and pack-
aging a set of required UI templates and configurations
and does not require modifications of the platform it-
self. An application can be delivered as a simple plu-
gin that can be installed automatically on top of the
standard platform release.

The platform provides a wide range of custom com-
ponents for various user needs primarily focusing on
the functionalities most often required by end users:
search, visualization, and authoring. The main proto-
col of interaction with RDF stores is the SPARQL
query language: an expressive formalism, which how-

ever is not convenient for non-expert users. For this
reason, search and visual exploration capabilities that
would capture information needs in a user-friendly
way and generate information retrieval queries based
on them are crucial for an end-user tool working with
knowledge graphs.

Semantic search and visual exploration capabilities
complement each other in enabling the user interac-
tion with the knowledge graph. Semantic search allows
defining exact information needs in a user-friendly
way and retrieving relevant data from the knowledge
graph. On the other hand, “exploration is about ef-
ficiently extracting knowledge from data even if we
do not know exactly what we are looking for” [10].
Structure of semantic datasets was exploited to gener-
ate facets for search refinement [11] and linked data
browsing [12], where facets are selected based on data
distribution within the dataset. The need to express in-
formation needs using complex SPARQL queries led
to development of query builder tools providing vi-
sual assistance to the user. For example, the ExCon-
Quer [13] framework provides an interface for con-
structing SPARQL queries where the user expresses
her information need by selecting the concepts and
properties from the ontology and building an abstract
query structure which is afterwards translated into
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a SPARQL query. OptiqueVQS [14] provides visual
query formulation allowing the user to select rele-
vant concepts and properties, express value restric-
tions, and visualize the resulting query pattern as a
graph structure. QueryVOWL [15] combines elements
of search and exploration as it provides a visual con-
struction of queries over the linked data and converts
the user-generated diagrams into SPARQL. However,
its use of exploration is rather limited as its only goal
is construction of the SPARQL query, rather than en-
abling the user working with its results. Others, like
Lodlive [16] or Aemoo [17] primarily focus on brows-
ing and graph-based exploration of data. In metaphac-
tory we aimed at combining components for structured
semantic search to capture the user needs and trans-
late them into SPARQL queries with powerful explo-
ration tools that would pick up the semantic search re-
sults and allow the user to further explore them (e.g,
by means of the Ontodia tool [18]).

In its structured search functionality, the metaphac-
tory platform puts emphasis on the capability to con-
figure search and adapt it to different use cases with
a minimal effort. In particular, search over the knowl-
edge graph is realized as an environment, which allows
specifying different ways for generating the search
query, refining it, and visualizing the search results. A
search request can be generated in several ways: e.g.,
by using a simple keyword search text field, by en-
tering parameters in a pre-defined form, or by con-
structing the search criteria iteratively, selecting rele-
vant properties and constraints. All these multiple ap-
proaches for expressing user information needs gener-
ate the search request in the same form: as a SPARQL
query. The query can be further refined using facets
that can be configured declaratively as part of the
search environment. Finally, the search results returned
by the produced query can be visualized by any ap-
propriate UI component depending on the form of data
and customer preferences: e.g., as a table or as a chart.

Built-in visualization components in the metaphac-
tory platform provide the capabilities to show subsets
of a knowledge graph in an informative way, facilitate
exploration of the graph, and summarize the informa-
tion. Depending on the structure of the data and the
target view, the developer can select alternative visu-
alization strategies, e.g., a table that condenses graph
data into a more traditional relational format or a graph
that emphasizes inter-relations between entities. For
the latter, the metaphactory platform is integrated with
a powerful Ontodia [18] tool for building custom RDF
graph diagrams (Fig. 3). At the moment, Ontodia rep-

resents one of the most powerful ontology visualiza-
tion tool taking into account the range of supported in-
teraction techniques [19]. Ontodia allows not only vi-
sualizing parts of an RDF graph, including concepts,
entities, relations, and properties, but also enables the
user to further explore the dataset and extend the view
in an interactive way. User experiments performed to
validate Ontodia in combination with semantic search
within the diagrammatic question answering workflow
on the Wikidata dataset have shown that the system
allows the users to interact with the knowledge graph
effectively without having upfront knowledge of the
dataset structure [20].

To summarize aggregated data and show the user the
analysis results, various charts are available. Common
special types of data, such as geospatial and temporal,
can be visualized using appropriate views: e.g., map or
timeline.

To support creation and editing of knowledge graphs,
the platform provides end-user friendly, customizable,
and extensible authoring UI based on the compos-
ite component environment and knowledge graph pat-
terns. In essence, a knowledge graph pattern is a struc-
ture including a SPARQL query pattern with some ad-
ditional metadata that is used for creation and vali-
dation of the user input. This concept helps to hide
the complexity of the underlying data model from the
end user, but at the same time allows expert users to
precisely capture information needs and adjust author-
ing UI for these needs by using various components
for data input, ranging from simple text inputs to hi-
erarchical suggestion components and nested forms
(Fig. 4). The application of knowledge graph patterns
is not limited only to data authoring. The same pattern
can be re-used in structured search for query genera-
tion and in visualization components for data retrieval.
This re-usability helps to make sure consistency of the
UI across the whole application.

5.2. Expressive keyword search querying with
GraphScope

GraphScope is a data search engine for knowledge
graphs that allows the user to access RDF data in a sim-
ple way by entering keyword queries. These keyword
queries are interpreted by GraphScope and the results
matching the information need are shown to the user.
GraphScope tries to answer the user’s query by finding
the most suitable interpretation of each keyword with
respect to concepts, properties, and instances of the
knowledge graph. To this end, GraphScope relies on
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Fig. 3. Graph visualization with Ontodia.

Fig. 4. Authoring forms using knowledge graph patterns.

a set of specialized indices that contain various meta-
information about the distribution of entities and asso-
ciated keywords in the data repository. Based on these
indices, GraphScope identifies the most appropriate
matches for the keywords in the user query and gener-
ates a corresponding SPARQL query to retrieve the re-
sults. After the system returned an initial result set for
the user’s keyword query, GraphScope provides possi-
bilities to further refine the query and explore the initial
result set. The user can select an appropriate interpreta-
tion for keywords to refine the meaning of the query as
well as further expand the results by exploring the rela-

tions of the entities in the result set. These refinements,
which the user performs from the UI, are automatically
transformed into modifications of the SPARQL query.

GraphScope, originally developed as a standalone
tool, was integrated with the metaphactory platform to
serve as an additional query generation approach in the
generic architecture. The integration is realized both
at the backend and frontend levels. GraphScope and
metaphactory reuse the same connection to the back-
end triple store to access data via SPARQL. At the
frontend level, the GraphScope user interface for defin-
ing a keyword search query and refining the search re-
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sults is wrapped as a metaphactory UI HTML5 com-
ponent that can be added on a template page.

5.3. Voice interface using Amazon Alexa

Separating the service layer backend and the client-
side UI makes it easy to integrate the platform with
external tools at the UI level: an alternative UI can
be deployed on top of the platform, while it can in-
teract with the knowledge graph by invoking rele-
vant platform services. An example of such alternative
user interface is voice interaction using Alexa that can
be used alongside the more traditional paradigms de-
scribed above [21]. The Amazon Alexa framework al-
lows the developer to define a specific service (called
Skill) to process user requests and generate verbalized
answers. The Alexa framework includes two parts: an
Alexa skill which provides an abstraction over com-
plex voice processing and generation services and an
Amazon Lambda service implementing the applica-
tion logic. An Alexa skill processes the voice mes-
sages from the user and transforms them into service
requests with provided parameters. A skill can define
a number of request types called intents, which can
in turn be mapped to several utterances (natural lan-
guage phrases). An utterance can be parameterized
using slots (request parameters): for example, when
Alexa receives a user’s question “Alexa, ask Wikidata
what is the capital of Poland”, it extracts the skill name
(Wikidata), identifies the intent corresponding to the
question “what is the capital of. . .?” and the corre-
sponding Lambda service. Then, the Lambda service
is invoked with the extracted parameters: the ID of the
intent (e.g., “capitalcity”) and the request parameter
(“Poland”). The Lambda service is then responsible for
finding the right answer and returning it in a verbalized
form. The Alexa service is then merely pronounces the
returned verbalized answer.

Our Lambda function finds an answer to the query
in the knowledge graph by mapping an intent to a
SPARQL query pattern. For example, to answer our
example question over the Wikidata knowledge graph,
we need to find the value of the property P36 “capital”
for the entity Q36 “Poland”.

To handle such a direct factual question, our Lambda
function uses a SPARQL query pattern of the follow-
ing form (here using the Blazegraph full-text search):
SELECT ?answer WHERE {

?uri rdfs:label ?label.
?label bssearch:search "${entity}".
?label bssearch:minRelevance "0.5".
?label bssearch:matchAllTerms "true".
?uri ${property} ?answer .

} LIMIT 1

We use an automated procedure to bootstrap the
Alexa skill definition and generate descriptions of in-
tents as well as example entities and verbalization tem-
plates. Our Alexa skill is available in the Amazon Skill
store under the name “metaphacts” in German and En-
glish20.

6. Experiences and Lessons Learnt

The metaphactory platform is used in production in
a variety of use cases involving knowledge graph man-
agement in different application domains. In the fol-
lowing we consider four diverse practical use cases
from the open knowledge graphs, cultural heritage, en-
ergy industry, and life sciences domains highlighting
different aspects of knowledge graph management.

6.1. Open Knowledge Graphs (Wikidata)

Wikidata21 is a free and open knowledge graph
containing general-purpose data across domains. It
is used as a reference data storage for other Wiki-
media projects (in particular, Wikipedia). Due to its
comprehensive nature and popularity, there exists a
large volume of mappings between Wikidata entities
and instances of other repositories, including domain-
specific ones (e.g., UniProt22 for proteins, GeoN-
ames23 for geographical locations, etc.).

To exploit this data, we have set up a public show-
case system for the community24, easing access to
the information provided by the Wikidata query ser-
vice. The system provides different search interfaces
as entry points into Wikidata’s knowledge base and
visualizes search results based on a comprehensive
HTML5 based templating approach. Internally, the
public metaphactory Wikidata system is used both
as an integration hub to facilitate integration of data
from multiple sources for the needs of industrial use
cases as well as a demo system to highlight various
platform features. Among others, the public Wikidata
metaphactory system includes such functionalities as

– Structured search over Wikidata (configured for
general-purpose person-organisation data as well
as for the life sciences domain)

20https://www.amazon.com/metaphacts/dp/B0745KLCFX/ for
US English.

21https://www.wikidata.org
22https://www.uniprot.org/
23http://www.geonames.org
24https://wikidata.metaphacts.com/

https://www.amazon.com/metaphacts/dp/B0745KLCFX/
https://www.wikidata.org
https://www.uniprot.org/
http://www.geonames.org
https://wikidata.metaphacts.com/
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– Integration with the Wikidata free-text search ser-
vice

– Integration with life science-specific repositories
to show additional views

– Semantic similarity search based on a word2vec
vector space embedding model [22]

– Geospatial search using a combination of
GeoSPARQL25 queries, external services like
OpenStreetMap26, and map-based visualizations.

Using the links to external repositories, the Wikidata
metaphactory system is used to integrate external data
in other use cases: e.g., to bring in geospatial data in
the cultural heritage use case or additional protein tis-
sue data from neXtProt27 in the life science scenario.

6.2. Cultural Heritage

Knowledge graph technologies have become promi-
nent in the context of the cultural heritage domain,
where the CIDOC-CRM ontology28 became a popu-
lar standard for exposing cultural heritage information
as linked data. The metaphactory platform is utilized
in the context of the ResearchSpace project29 to man-
age the British Museum knowledge graph and help the
researchers (a) explore meta-data about museum arti-
facts: historical context, associations with geograph-
ical locations, creators, discoverers and past owners,
etc, and (b) use this meta-data in collaborative work
by creating annotations, narratives involving semantic
references, and argumentations exploiting knowledge
graph data as evidence [23].

A crucial piece of functionality is the structured
search, where the user can define complex multi-
criteria information needs iteratively, by selecting ap-
propriate clauses in the user interface (Fig. 5). A query
request, which can look like “give me all bronze arti-
facts created in Egypt between 2500BC and 2000BC”,
then gets translated into SPARQL and answered us-
ing the knowledge graph data. Given the complexity
and very high expressivity of the CIDOC-CRM on-
tology, using it directly at the level of user interface
would make the system complicated for the end-user.
For this reason, we defined a set of special fundamen-
tal concepts (FCs) and relations (FRs) [24], which ab-
stract over physical classes and properties of the ontol-

25http://www.opengeospatial.org/standards/geosparql
26https://www.openstreetmap.org
27https://www.nextprot.org/
28http://www.cidoc-crm.org/
29http://www.researchspace.org/

ogy, while being intuitively understandable to the user
(e.g., Thing, Actor, Event and relations between them).
With the structured search interface, the user can spec-
ify the criteria for data selection, interactively refine
the initial selection results, explore the returned result
set with faceted search and different results visualiza-
tion views, and finally save the defined search for fu-
ture reuse.

Knowledge graph data is used to support research
collaborations by enabling the argumentation process
and making assertions about graph entities following
the direction outlined in [25]. User assertions have ex-
plicitly stored provenance information and can com-
pose complex exchanges of arguments allowing to
trace the whole reasoning process back to its origins
and base evidence. Finally, the data selected from the
knowledge graph can be used as references in semantic
narratives that combine user-authored text, references
to knowledge graph entities and different data visual-
izations supported by the platform: from images asso-
ciated to entities to charts summarizing selected data
subsets.

A demo installation of the ResearchSpace platform
over the British Museum knowledge graph collection
is available on the Web30.

While the British Museum data collection was the
first target use case in the cultural heritage domain,
the resulting ResearchSpace platform extension was
re-applied for other use cases in this area. Sphaera Cor-
pusTracer [26], a practical application developed in
collaboration with the Max-Planck Institute manages a
knowledge graph addressing science history informa-
tion: e.g., tracing the survived printed publications of
medieval astronomy textbooks in the early modern pe-
riod31.

6.3. Engineering & Manufacturing Industry

Large-scale organizations involved in the engineer-
ing and manufacturing industry use knowledge graph
representation to model master data: e.g., information
about products and their typology, separate assembly
parts, projects and their topics, etc. An inherent trait
of these use cases is the condition that the knowledge
graph constitutes only a part of a complex infrastruc-
ture involving heterogeneous data sources and large-
scale networks of atomic devices able to communicate
data. This raises a number of challenges for data man-

30https://demo.researchspace.org
31http://db.sphaera.mpiwg-berlin.mpg.de

http://www.opengeospatial.org/standards/geosparql
https://www.openstreetmap.org
https://www.nextprot.org/
http://www.cidoc-crm.org/
http://www.researchspace.org/
https://demo.researchspace.org
http://db.sphaera.mpiwg-berlin.mpg.de
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Fig. 5. Structured semantic search over British Museum artifacts.

agement and utilization: in particular, the need to in-
tegrate static knowledge with runtime data and apply
potentially complex analysis procedures.

These challenges are present in full in the use
case scenarios in which metaphactory is applied at
Siemens [27]. For example, a typical Siemens gas tur-
bine has about 2,000 sensors and a diagnostic task to
detect whether a single particular purging operation
is over requires applying multiple hundreds of signal
processing rules. To be able to process relevant infor-
mation in a timely way and achieve intelligent diag-
nostics, knowledge graph data must be integrated with
runtime information provided by relevant APIs on de-
mand. In this context, knowledge graph information
acts as the integration backbone for the heterogeneous
data infrastructure. To provide the integrated view of
this hybrid infrastructure, the integration capabilities
of the metaphactory platform play a crucial role.

The Ephedra federation architecture enables com-
bining the “native” knowledge graph data with the data
produced by the API services available in the Siemens
infrastructure, such as MindSphere32, as well as with
analysis results produced by machine learning algo-

32https://siemens.mindsphere.io/

rithms in a transparent way, at the level of SPARQL
queries.

For example, one of the use cases involves using
the knowledge graph to integrate and represent knowl-
edge about a building in order to create a full virtual
copy (Digital Twin) of the real building, including the
static information describing the building as well as
dynamic sensor data reflecting its current state. In an-
other case, a trained machine learning model is ex-
posed as a REST API that takes as input a list of fea-
tures and returns as response the classification results
of a text categorization problem. The use of Ephedra
allows wrapping these diverse API as SPARQL feder-
ation members and processing federated queries that
join the raw data with the predictions generated by ma-
chine learning. In this way, the hybrid data integra-
tion capabilities enabled by the platform enable several
practical end-user scenarios within the Siemens infras-
tructure using a common approach to build several dis-
tinct knowledge graph applications targeting different
user groups.

https://siemens.mindsphere.io/
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6.4. Life Sciences

The life sciences and pharmacy industry has been
among the early adopters of the semantic web/knowledge
graph technologies. Currently there exists a wide range
of reusable life-science reference datasets already pub-
lished in RDF and available in public linked data
repositories (e.g., neXtProt [28], ChEMBL33 [29] and
others). In order to be exploited in an industrial en-
vironment, these datasets must be integrated with the
internal data sources collected within the organization.

Such a scenario involved utilizing the metaphac-
tory platform within the Sanofi S.A.34 pharmaceuti-
cal company. The project focused on building a tar-
get dashboard to support internal decision making pro-
cesses using integrated data from over 20 different data
repositories including both company-internal and pub-
lic data. The metaphactory platform served as a one-
stop portal for consolidated access to target-related in-
formation such as function, expression, genetics, inter-
actions/pathways, etc.

To achieve transparent querying of integrated data,
relevant data sources were brought together using a
combination of ETL processes and virtual integra-
tion. Data contained in relational databases were trans-
formed using R2RML mappings. A high-level ontol-
ogy was designed to serve as a global schema to ab-
stract from the set of local ontologies of each data
source. To support the end-user in finding and inter-
preting the data, the target dashboard user interface
was built using the metaphactory UI templating func-
tionality and the generic platform services. The dash-
board includes complementary search mechanisms,
which can be used depending on the user task at hand:
structured search that realizes ontology-based graph-
ical query building and keyword search. Search re-
sults are visualized using template pages according to
the relevant types of entities. In addition, the data ex-
posed via the platform API services is further exploited
by third-party tools like KNIME to perform advanced
data analysis.

Given the diversity of data to be integrated and the
likelihood of error, ensuring the quality control be-
comes a matter of critical importance. To this end, the
platform setup included the use of SHACL to verify
the quality of the data. Using a combination of SHACL
constraints automatically generated from the ontology
as well as manually curated domain rules help to en-

33https://www.ebi.ac.uk/chembl/
34http://www.sanofi.com

sure that the added value of data integration is not com-
promised by reduced data quality.

6.5. Discussion

The metaphactory platform has been deployed in
various knowledge graph management use cases tar-
geted at different industries, organization types, and
user groups. This experience provided us with valu-
able hints regarding the management and exploitation
of knowledge graphs within enterprise organizations as
well as the challenges which have to be addressed by
a general-purpose knowledge graph management plat-
form. The use cases demonstrate the importance for
a knowledge graph application to adapt to the needs
of existing data infrastructure aiming to complement
it with missing functionalities rather than replace it.
The knowledge graph platform must support rapid de-
velopment and deployment of a use case application
that would demonstrate the added value of knowledge
graph technologies. Two examples of such function-
alities are transparent data integration and semantic
search.

Data integration needs of real-world customers of-
ten go beyond RDF data and relational/tabular data
sources. While static data can be integrated by means
of a dedicated ETL process and physical materializa-
tion of data as RDF, using dynamic data in combina-
tion with the knowledge graph requires extension of
common data access mechanisms. The metaphactory
approach to the problem includes support of hybrid in-
formation needs by means of extended SPARQL 1.1
federation capabilities. In this case, dynamic data ex-
posed by means of a service can be accessed by request
and combined with the knowledge graph information
at the level of query results.

The use of open standards is crucially important in
realizing interactions with third-party tools at all lev-
els. For example, using SPARQL 1.1 as a generic inter-
face for communicating with data repositories enables
the platform to interact with any triple store selected by
the customer without imposing any restrictions on the
infrastructure. For the same reason, it is also beneficial
if a knowledge graph management platform can pro-
vide its output using interfaces preferred by the organi-
zation’s developer teams: for instance, if some data can
be retrieved by sending a SPARQL query to the end-
point, it is still often preferable if the same data can be
provided via a REST API call with a set of key-value
parameters.

https://www.ebi.ac.uk/chembl/
http://www.sanofi.com
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One generic observation regarding the requirements
towards end-user supporting tools in the industrial set-
ting concerns the way reusability is achieved. In aca-
demic research the focus is often on providing a maxi-
mally generic approach that is able to adapt to the spe-
cific task at hand by using intelligent heuristics: for ex-
ample, by generating automatically the most suitable
set of facets for semantic search results exploration
or by automatic selection of relevant data sources to
achieve transparent query federation. In the industrial
setting, the possibility to adjust the configuration of
some module manually in a very fine-grained way is
usually more important, while automating heuristics
can play only an auxiliary role. This is mainly due
to the need to deal with “long tail“ edge cases in the
knowledge graph structure, for which a generic tech-
nique would fail: improving the coverage of a fully
generic approach for such cases is usually more expen-
sive than manual configuration. This often creates an
obstacle for applying open source tools developed in
the research community to industry use cases.

A survey in [30] introduces an assessment frame-
work for knowledge graph tools, listing such dimen-
sions as human interaction, machine interaction, and
strategic development. Table 2 summarizes the fea-
tures implemented in the metaphactory platform to
support each of the assessment parameters of these di-
mension. To realize its goal of supporting the whole
knowledge graph lifecycle, metaphactory realizes all
dimensions and parameters listed in the assessment
benchmark. No other tool evaluated in [30] includes
all the features. Moreover, the variety of different use
cases described in sections 6.1 to 6.4 demonstrate the
platform ability to support rapid development of cus-
tom applications with minimal effort by providing cus-
tom configurations of core features rather than custom
implementations.

However, based on the experience of using the plat-
form in industrial use cases, it is apparent that sup-
port for some of these functionality dimensions still
has limitations and requires further improvement. The
most important of these are data curation, linking,
and analytics. Manual knowledge graph population
and editing is often a costly process where automa-
tion can provide added value in many ways, both to as-
sist the user in manual curation workflows and to sup-
port automated knowledge graph population from un-
structured sources. Given the variety of the data inte-
gration use cases, data interlinking challenges arise in
different contexts and require the ability to deal with
different data modalities and formats (e.g, free text,

XML&JSON documents) as well as apply semi- or
fully automated data interlinking algorithms. Finally,
supporting data scientists in performing advanced data
analytics tasks requires better integration of the plat-
form with a variety of common machine learning and
analysis tools as well as generic out-of-the box support
for integration of analysis results back into the knowl-
edge graph.

7. Conclusions and Outlook

The metaphactory platform has been developed
with the aim to support interaction with knowledge
graphs and utilize the added value of knowledge graph
data within organizational environments. The trial ver-
sion of the platform can be accessed for free after reg-
istration35.

Given the feedback gathered in multiple use cases
and the limitations listed in Section 6.5, we consider
several directions particularly important to improve the
current version of the platform.

– Intelligent data authoring. Whenever knowledge
graph data has to be inserted manually by the user
rather than imported from pre-existing sources, it
often constitutes a cumbersome and time-costly
process. It is important to assist the user in knowl-
edge graph population tasks whenever possible
providing intelligent auto-suggestions as well as
validating and refining user input. To this end,
the use of novel machine learning techniques
for knowledge graph population, particularly,
embedding-based methods appears particularly
promising.

– Integration with machine learning technologies.
Knowledge graphs provide added value serving
as input for machine learning techniques produc-
ing new information, as well as can themselves
be extended using machine learning. metaphac-
tory platform already includes interfaces that can
be utilized for interaction with machine learning
tools. Providing configurable general-purpose ex-
tensions enabling application of machine learn-
ing tools with minimal effort would further bene-
fit data scientists.

35http://www.metaphacts.com/trial, at the time of writing the ver-
sion 2.3.2 is available.

http://www.metaphacts.com/trial
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Table 2
Assessing metaphactory platform features along benchmark dimensions [30]

Dimension Parameter Features
D1 Human Interaction P1 Modeling Taxonomies, Ontologies, Rules, Mappings

P2 Curation Collaborative, Form-based, GUI
P3 Linking Mappings, Virtual integration (Federation)
P4 Exploration/Visualization Charts, Maps, Graphs, Faceted browsing, Web GUI Templates
P5 Search Full-text, Structured, Faceted, Federated, NL question answering

D2 Machine Interaction P6 Data Model RDF, RDFS, OWL, RDBMS + R2RML
P7 APIs SPARQL, LDP, custom REST APIs

D3 Strategic Development P8 Governance Data workflows, Best practices
P9 Security Role-based AC (Data-level, API-level)
P10 Quality & Maturity SHACL
P11 Provenance Data-level (Context)
P12 Analytics Graph-based (Ontodia), ML, Statistical workflows (KNIME, Tableau)

– Advanced data integration tasks. This involves,
in particular, platform-level support for manag-
ing mappings for integration of non-RDF struc-
tured (e.g., JSON, XML) and unstructured (e.g.,
text) sources as well as common integration pro-
cedures, such as instance matching.

– Development of “blueprints” for common use
cases. Given commonalities between different
use cases, it is desirable to develop common
“blueprint” templates for applications. Such ap-
plication templates will greatly reduce costs for
building applications targeted at new use cases.
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